

Continue

bankruptcy [33] and bio-sourced succinic acid is now barely made.[34] Several laboratory chemicals are controversial from the perspective of Green chemistry. The Massachusetts Institute of Technology created a "Green" Alternatives Wizard [1] to help identify alternatives. Ethidium bromide, xylene, mercury, and formaldehyde have been identified as "worst offenders" which have alternatives.[35] Solvents in particular make a large contribution to the environmental impact of chemical manufacturing and there is a growing focus on introducing Greener solvents into the earliest stage of development of these processes: laboratory-scale reaction and purification methods.[36] In the Pharmaceutical Industry, both GSK[37] and Pfizer[38] have published Solvent Selection Guides for their Drug Discovery chemists. In 2007, the EU put into place the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) program, which requires companies to provide data showing that their products are safe. This regulation (1907/2006) ensures not only the assessment of the chemicals' hazards as well as risks during their uses but also includes measures for banning or restricting/authorising uses of specific substances. ECHA, the EU Chemicals Agency in Helsinki, is implementing the regulation whereas the enforcement lies with the EU member states. The United States formed the Environmental Protection Agency (EPA) in 1970 to protect human and environmental health by creating and enforcing environmental regulation. Green chemistry builds on the EPA's goals by encouraging chemists and engineers to design chemicals, processes, and products that avoid the creation of toxins and waste.[39] The U.S. law that governs the majority of industrial chemicals (excluding pesticides, foods, and pharmaceuticals) is the Toxic Substances Control Act (TSCA) of 1976. Examining the relative of regulatory programs in shaping the development of green chemistry in the United States, analysts have revealed structural flaws and long-standing weaknesses in TSCA; for example, a 2006 report to the California Legislature concludes that TSCA has produced a domestic chemicals market that discounts the hazard properties of chemicals relative to their function, price, and performance.[40] Scholars have argued that such market conditions represent a key barrier to the scientific, technical, and commercial success of green chemistry in the U.S., and fundamental policy changes are needed to correct these weaknesses.[41] Passed in 1990, the Pollution Prevention Act helped foster new approaches for dealing with pollution by preventing environmental problems before they happen. Green chemistry grew in popularity in the United States after the Pollution Prevention Act of 1990 was passed. This Act declared that pollution should be lowered by improving designs and products rather than treatment and disposal. These regulations encouraged chemists to imagine pollution and research ways to limit the toxins in the atmosphere. In 1991, the EPA Office of Pollution Prevention and Toxics created a research grant program encouraging the research and recreation of chemical products and processes to limit the impact on the environment and human health.[42] The EPA hosts "The Green Chemistry Challenge" each year to incentivize the economic and environmental benefits of developing and using green chemistry.[43] In 2008, the State of California approved a new green chemistry initiative. One of these statutes required California's Department of Toxic Substances Control (DTSC) to develop, next to the "chemical of concern" and promote the substitution of hazardous chemicals with safer alternatives. The resulting regulation took effect in 2011, creating DTSC's Safer Consumer Products (SCP) program.[44] Green Chemistry (RSC) Green Chemistry Letters and Reviews (Oxford University Press) [45] Taylor & Francis [46] ChemSusChem (Wiley) ACS Sustainable Chemistry & Engineering (ACS) [47] There are ambiguities in the definition of green chemistry and how it is understood among broader science, policy, and business communities. Even within chemistry, researchers have used the term "green chemistry" to describe a range of work independently of the framework put forward by Anastas and Warner (i.e., the 12 principles). [13] While not all uses of the term are legitimate (see greenwashing), many are, and the authoritative status of any single definition is uncertain. More broadly, the idea of green chemistry can easily be linked (or confused) with related concepts like green engineering, environmental design, or sustainability in general. Green chemistry's complexity and multifaceted nature makes it difficult to devise clear and simple metrics. As a result, "what is green" is often open to debate.[45] Several scientific societies have created awards to encourage research in green chemistry. Australia's Green Chemistry Challenge Awards overseen by The Royal Australian Chemical Institute (RACI). The Canadian Green Chemistry Medal.[46] In Italy, Green Chemistry Awards are given by Crystal Faraday.[49] In the U.S., the Presidential Green Chemistry Challenge Awards recognize individuals and businesses.[50][51] Chemistry portal Bioremediation – a technique that generally falls outside the scope of green chemistry. Environmental engineering science Green Chemistry (Journal) – published by the Royal Society of Chemistry Green chemistry metrics Green computing – a similar initiative in the area of computing Green engineering Substitution of dangerous chemicals Sustainable engineering ^ Mutlu, Hatice; Barner, Leonie (2022-06-03). "Getting the Terms Right: Green, Sustainable, or Circular Chemistry?". *Macromolecular Chemistry and Physics*. 223 (13): 2200111. ISSN 1022-1352. S2CID 249357642. ^ "Green Chemistry". United States Environmental Protection Agency. 2006-06-28. Retrieved 2011-03-23. ^ Sheldon, R. A.; Arends, I. W. C. E.; Hanefeld, U. (2007). "Green Chemistry and Catalysis (PDF)". *Green Chemistry*. 9 (7): 715–721. doi:10.1002/9783527611003. S2CID 92947071. ^ Clarke, J. H.; Luque, R.; Matharu, A. S. (2012). "Green Chemistry, Biofuels, and Biorefinery". *Annual Review of Chemical and Biomolecular Engineering*. 3: 183–207. doi:10.1146/annurev-chembiomed-062011-081014. PMID 22468603. ^ Cernansky, R. (2015). "Chemistry: Green refill". *Nature*. 519 (7543): 379–380. doi:10.1038/nj7543-379a. PMID 25932339. ^ Sanderson, K. (2011). "Chemistry: It's not easy being green". *Nature*. 469 (7328): 18–20. Bibcode:2011Natur.469...18S. doi:10.1038/4807961G. ^ "Green Chemistry". LibreTexts. 6 February 2015. Retrieved 2 February 2025. ^ Marteel, Anne E.; Davies, Julian A.; Olson, Walter W.; Abraham, Martha A. (2003). "GREEN CHEMISTRY AND ENGINEERING: Drivers, Metrics, and Reduction to Practice". *Annual Review of Environment and Resources*. 38 (2): 377–410. doi:10.1146/annurev.energy.28.011503.163459. ^ Vert, Michel; Doi, Yoshibumi; Hellwijk, Karl-Heinz; Hess, Michael; Dodge, Philip; Kubisa, Przemyslaw; Rinaudo, Marguerite; Schuh, Francois (2012). "Terminology for biopolymers and applications (IUPAC Recommendations 2012)". *Pure and Applied Chemistry*. 84 (2): 401–428. doi:10.1351/PAC-REC-10-12-04. S2CID 98107080. ^ Woodhouse, E. J.; Breyman, S. (2005). "Green chemistry as social movement?". *Science, Technology, & Human Values*. 30 (2): 199–222. doi:10.1177/0162243904271726. S2CID 146774456. ^ a b c Linthorst, J. A. (2009). "An overview: Origins and development of green chemistry". *Foundations of Chemistry*. 12: 55–68. doi:10.1007/s10698-009-9079-4. ^ Linthorst, Johan Alfredo (2023). *Research between Science, Society and Politics: The History and Scientific Development of Green Chemistry*. Utrecht: Eburon. Retrieved 2023-02-09. pp. 115–141. ISBN 9789463014342. ^ Anastas, Paul T.; Warner, John C. (1998). "Green chemistry: theory and practice". Oxford [England]; New York: Oxford University Press. ISBN 9780198502340. ^ "The 12 Principles of Green Chemistry". MilliporeSigma. Retrieved 2 February 2025. ^ "12 Principles of Green Chemistry - American Chemical Society". American Chemical Society. Retrieved 2018-02-16. ^ Van Aken, K.; Strelakowski, L.; Patiny, L. (2006). "EcoScale: a semi-quantitative tool to select an organic preparation based on economical and ecological parameters". *Beilstein Journal of Organic Chemistry*. 2 (1): 3. doi:10.1186/1860-5397-2-3. PMC 1409775. PMID 16542013. ^ "Green nanotechnology" (PDF). Archived from the original (PDF) on 2016-04-06. Retrieved 2008-03-01. ^ Hemant Kumar Daima; Shanker Lal Kothari; Bhargava Suresh Kumar, eds. (2021). *Nanotoxicology toxicity evaluation of nanomedicine applications*. Boca Raton. ISBN 978-1-000-39991-2. OCLC 1256699945. {cite book}}: CS1 maint: location missing publisher (link) ^ Torok, Bela (2017). *Green Chemistry: An Inclusive Approach*. Amsterdam: Elsevier. p. Ch 3.15. ^ Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. (2013). "Sanofi's Solvent Selection Guide: A Step Toward More Sustainable Processes". *Org. Process Res. Dev.*. 17 (12): 1517–1525. doi:10.1021/op4002563. ^ Sherman, J.; Chin, B.; Huibers, P. D. T.; Garcia-Valls, R.; Hatton, T. A. (1998). "Solvent Replacement for Green Processing". *Environ. Health Perspect.* 106 (Suppl 1): 253–271. doi:10.2307/3433925. JSTOR 3433925. PMC 1533296. PMID 9539018. ^ Isoni, J. (1999). "Q-SAOESS: A methodology to help solvent selection for pharmaceutical manufacture at the early process development stage". *Green Chem.* 18: 6564. doi:10.1039/C6GC02440H. ^ Clarke, Coby J.; Tu, Wei-Chien; Levers, Oliver; Hallett, Jason P. (2018). "Green and Sustainable Solvents in Chemical Processes". *Chemical Reviews*. 118 (2): 747–800. doi:10.1021/acs.chemrev.7b00571. hdl:10044/1/59694. PMID 29300087. ^ a b a Jessop, Philip (2017). "Green/Alternative Solvents". In Abraham, M. A. (ed.). *Encyclopedia of Sustainable Technologies*. Elsevier. pp. 611–619. ISBN 9780128046777. ^ "The Nobel Prize in Chemistry 2005". The Nobel Foundation. Retrieved 2006-08-04. ^ Noyori, R. (2005). "Pursuing practicality in chemical synthesis". *Chemical Communications*. 2005: 1–10. doi:10.1039/B502713F. PMID 16795753. ^ "Green Chemistry by More Eco Design" (PDF). Waste and Biomass Valorization. 3 (4): 395–407. Bibcode:2012WBioV...3...395B. doi:10.1007/s12649-012-9146-2. PMID 22984470. ^ Pierre Schirmann, Paul Bourlauducci "Hydrayze" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a13_177. ^ Kurian, Joseph V (2005). "A New Polymer Platform for the Future - Sorona from Corn Derived 1,3-Propanediol". *Journal of Polymers and the Environment*. 13 (2): 159–167. doi:10.1007/s10924-005-2947-7. S2CID 137246045. ^ "2011 Small Business Award". United States Environmental Protection Agency. 2013-03-12. Archived from the original on 2014-11-29. Retrieved 2013-10-03. ^ "Succinic acid maker BioAmber in bankrupt". *Chemical & Engineering News*. 2018-05-13. ^ "Succinic acid, once a biobased chemical star, is barely being made". *Chemical & Engineering News*. 2019-03-20. ^ Coombs A. (2009). *Green* on the Bench Archived 2009-07-10 at the Wayback Machine. *The Scientist*. ^ Bradley, Jean-Claude; Abraham, Michael H.; Acree, William E.; Lang, Andrew (2015). "Predicting Abraham model solvent coefficients". *Chemical Central Journal*. 9: 12. doi:10.1186/s13065-015-0085-4. PMID 24369285. PMID 25798192. ^ Henderson, R. K.; Jiménez-González, C. N.; Constable, D. J. C.; Alston, S. R.; Ingles, G. G. A.; Fisher, G.; Sherwood, J.; Binks, P. S.; Curzons, A. D. (2013). "Expanding GSK's solvent selection guide - embedding sustainability into solvent selection starting at medicinal chemistry". *Green Chemistry*. 15 (4): 854. doi:10.1039/c0gc00918k. S2CID 56376990. ^ Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefanakis, M. (2008). "Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation". *Green Chem.* 10: 31–36. doi:10.1039/B711717E. S2CID 9715218. ^ "What Is Green Chemistry?". American Chemical Society. Retrieved 2021-01-29. ^ Wilson, M. P.; Chia, D. A.; Ehlers, B. C. (2006). "Green chemistry in California: a framework for leadership chemicals policy and innovation" (PDF). *New Solutions*. 16 (4): 365–372. doi:10.2190/9584-1330-1647-136p. PMID 17317635. S2CID 43455643. Archived from the original (PDF) on 2010-06-11. Retrieved 2015-09-06. ^ Wilson, M. P.; Schwartzman, M. R. (2009). "Toward a new U.S. Chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health". *Environmental Health Perspectives*. 117 (8): 1202–9. Bibcode:2009EnvHP.117.1202W. doi:10.1289/ehp.0800404. PMC 2721862. PMID 19672398. ^ "History of Green Chemistry | Center for Green Chemistry & Green Engineering at Yale". greenchemistry.yale.edu. Retrieved 2021-01-29. ^ California Department of Toxic Substances Control. "What is the Safer Consumer Products (SCP) Program?". Retrieved 5 September 2015. ^ "The 12 Principles of Green Chemistry". U.S. EPA. Retrieved 2021-01-29. ^ "Information About the Green Chemistry Challenge". US EPA. Retrieved 2021-01-29. ^ "OCSP (2013-02-13). "Information About the Green Chemistry Challenge". US EPA. Retrieved 2013-02-13. "Information About the Green Chemistry Challenge". US EPA. Retrieved 2013-02-13. ^ "The 12 Principles of Green Chemistry". American Chemical Society. Retrieved 2018-02-16. ^ "Van Aken, K.; Strelakowski, L.; Patiny, L. (2006). "EcoScale: a semi-quantitative tool to select an organic preparation based on economical and ecological parameters". *Beilstein Journal of Organic Chemistry*. 2 (1): 3. doi:10.1186/1860-5397-2-3. PMC 1409775. PMID 16542013. ^ "Green nanotechnology" (PDF). Archived from the original (PDF) on 2016-04-06. Retrieved 2008-03-01. ^ Hemant Kumar Daima; Shanker Lal Kothari; Bhargava Suresh Kumar, eds. (2021). *Nanotoxicology toxicity evaluation of nanomedicine applications*. Boca Raton. ISBN 978-1-000-39991-2. OCLC 1256699945. {cite book}}: CS1 maint: location missing publisher (link) ^ Torok, Bela (2017). *Green Chemistry: An Inclusive Approach*. Amsterdam: Elsevier. p. Ch 3.15. ^ Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. (2013). "Sanofi's Solvent Selection Guide: A Step Toward More Sustainable Processes". *Org. Process Res. Dev.* 17 (12): 1517–1525. doi:10.1021/op4002563. JSTOR 3433925. PMC 1533296. PMID 9539018. ^ Isoni, J. (1999). "Q-SAOESS: A methodology to help solvent selection for pharmaceutical manufacture at the early process development stage". *Green Chem.* 18: 6564. doi:10.1039/C6GC02440H. ^ Clarke, Coby J.; Tu, Wei-Chien; Levers, Oliver; Hallett, Jason P. (2018). "Green and Sustainable Solvents in Chemical Processes". *Chemical Reviews*. 118 (2): 747–800. doi:10.1021/acs.chemrev.7b00571. hdl:10044/1/59694. PMID 29300087. ^ a b a Jessop, Philip (2017). "Green/Alternative Solvents". In Abraham, M. A. (ed.). *Encyclopedia of Sustainable Technologies*. Elsevier. pp. 611–619. ISBN 9780128046777. ^ "The Nobel Prize in Chemistry 2005". The Nobel Foundation. Retrieved 2006-08-04. ^ Noyori, R. (2005). "Pursuing practicality in chemical synthesis". *Chemical Communications*. 2005: 1–10. doi:10.1039/B502713F. PMID 16795753. ^ "Green Chemistry by More Eco Design" (PDF). Waste and Biomass Valorization. 3 (4): 395–407. Bibcode:2012WBioV...3...395B. doi:10.1007/s12649-012-9146-2. PMID 22984470. ^ Pierre Schirmann, Paul Bourlauducci "Hydrayze" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a13_177. ^ Kurian, Joseph V (2005). "A New Polymer Platform for the Future - Sorona from Corn Derived 1,3-Propanediol". *Journal of Polymers and the Environment*. 13 (2): 159–167. doi:10.1007/s10924-005-2947-7. S2CID 137246045. ^ "2011 Small Business Award". United States Environmental Protection Agency. 2013-03-12. Archived from the original on 2014-11-29. Retrieved 2013-10-03. ^ "Succinic acid maker BioAmber in bankrupt". *Chemical & Engineering News*. 2018-05-13. ^ "Succinic acid, once a biobased chemical star, is barely being made". *Chemical & Engineering News*. 2019-03-20. ^ Coombs A. (2009). *Green* on the Bench Archived 2009-07-10 at the Wayback Machine. *The Scientist*. ^ Bradley, Jean-Claude; Abraham, Michael H.; Acree, William E.; Lang, Andrew (2015). "Predicting Abraham model solvent coefficients". *Chemical Central Journal*. 9: 12. doi:10.1186/s13065-015-0085-4. PMID 24369285. PMID 25798192. ^ Henderson, R. K.; Jiménez-González, C. N.; Constable, D. J. C.; Alston, S. R.; Ingles, G. G. A.; Fisher, G.; Sherwood, J.; Binks, P. S.; Curzons, A. D. (2013). "Expanding GSK's solvent selection guide - embedding sustainability into solvent selection starting at medicinal chemistry". *Green Chemistry*. 15 (4): 854. doi:10.1039/c0gc00918k. S2CID 56376990. ^ Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H. P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefanakis, M. (2008). "Green chemistry tools to influence a medicinal chemistry and research chemistry based organisation". *Green Chem.* 10: 31–36. doi:10.1039/B711717E. S2CID 9715218. ^ "What Is Green Chemistry?". American Chemical Society. Retrieved 2021-01-29. ^ Wilson, M. P.; Schwartzman, M. R. (2009). "Toward a new U.S. Chemicals policy: Rebuilding the foundation to advance new science, green chemistry, and environmental health". *Environmental Health Perspectives*. 117 (8): 1202–9. Bibcode:2009EnvHP.117.1202W. doi:10.1289/ehp.0800404. PMC 2721862. PMID 19672398. ^ "History of Green Chemistry | Center for Green Chemistry & Green Engineering at Yale". greenchemistry.yale.edu. Retrieved 2021-01-29. ^ California Department of Toxic Substances Control. "What is the Safer Consumer Products (SCP) Program?". Retrieved 5 September 2015. ^ "The 12 Principles of Green Chemistry". U.S. EPA. Retrieved 2021-01-29. ^ "Information About the Green Chemistry Challenge". US EPA. Retrieved 2013-02-13. ^ "Information About the Green Chemistry Challenge". US EPA. Retrieved 2013-02-13. ^ "The 12 Principles of Green Chemistry". American Chemical Society. Retrieved 2018-02-16. ^ "Van Aken, K.; Strelakowski, L.; Patiny, L. (2006). "EcoScale: a semi-quantitative tool to select an organic preparation based on economical and ecological parameters". *Beilstein Journal of Organic Chemistry*. 2 (1): 3. doi:10.1186/1860-5397-2-3. PMC 1409775. PMID 16542013. ^ "Green nanotechnology" (PDF). Archived from the original (PDF) on 2016-04-06. Retrieved 2008-03-01. ^ Hemant Kumar Daima; Shanker Lal Kothari; Bhargava Suresh Kumar, eds. (2021). *Nanotoxicology toxicity evaluation of nanomedicine applications*. Boca Raton. ISBN 978-1-000-39991-2. OCLC 1256699945. {cite book}}: CS1 maint: location missing publisher (link) ^ Torok, Bela (2017). *Green Chemistry: An Inclusive Approach*. Amsterdam: Elsevier. p. Ch 3.15. ^ Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; Hosek, P. (2013). "Sanofi's Solvent Selection Guide: A Step Toward More Sustainable Processes". *Org. Process Res. Dev.* 17 (12): 1517–1525. doi:10.1021/op4002563. JSTOR 3433925. PMC 1533296. PMID 9539018. ^ Isoni, J. (1999). "Q-SAOESS: A methodology to help solvent selection for pharmaceutical manufacture at the early process development stage". *Green Chem.* 18: 6564. doi:10.1039/C6GC02440H. ^ Clarke, Coby J.; Tu, Wei-Chien; Levers, Oliver; Hallett, Jason P. (2018). "Green and Sustainable Solvents in Chemical Processes". *Chemical Reviews*. 118 (2): 747–800. doi:10.1021/acs.chemrev.7b00571. hdl:10044/1/59694. PMID 29300087. ^ a b a Jessop, Philip (2017). "Green/Alternative Solvents". In Abraham, M. A. (ed.). *Encyclopedia of Sustainable Technologies*. Elsevier. pp. 611–619. ISBN 9780128046777. ^ "The Nobel Prize in Chemistry 2005". The Nobel Foundation. Retrieved 2006-08-04. ^ Noyori, R. (2005). "Pursuing practicality in chemical synthesis". *Chemical Communications*. 2005: 1–10. doi:10.1039/B502713F. PMID 16795753. ^ "Green Chemistry by More Eco Design" (PDF). Waste and Biomass Valorization. 3 (4): 395–407. Bibcode:2012WBioV...3...395B. doi:10.1007/s12649-012-9146-2. PMID 22984470. ^ Pierre Schirmann, Paul Bourlauducci "Hydrayze" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a13_177. ^ Kurian, Joseph V (2005). "A New Polymer Platform for the Future - Sorona from Corn Derived 1,3-Propanediol". *Journal of Polymers and the Environment*. 13 (2): 159–167. doi:10.1007/s10924-005-2947-7. S2CID 137246045. ^ "2011 Small Business Award". United States Environmental Protection Agency. 2013-03-12. Archived from the original on 2014-11-29. Retrieved 2013-10-03. ^ "Succinic acid maker BioAmber in bankrupt". *Chemical & Engineering News*. 2018-05-13. ^ "Succinic acid, once a biobased chemical star, is barely being made". *Chemical & Engineering News*. 2019-03-20. ^ Coombs A. (2009). *Green* on the Bench Archived 2009-07-1